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Although calculations of this type do not
predict the proper behavior for the u-/3

characteristic near stopbands resulting from
a periodic perturbation, they do predict the
occurrence and width of such stop bands.
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Ice as a Bending Medium for Wave-

guide and Tubing*

Bending waveguide and metal tubing is

very often a difficult and time-consuming
task. Low melting temperature alloys are
at times difficult to remove from waveguide

and tubing. The piece to be bent may be

filled with water which is then frozen by dry

ice, liquid nitrogen, or by a deep freeze. In

some applications where the piece to be bent

is integral with a larger system, a block of
dry ice may be held against it to freeze only
the portion of water around the section to
be bent. The use of these low temperatures
causes not only the water to freeze into
quite small crystals (which act like a sand
packing), but also prevents the ice from

melting because of the pressure of bending.
Several tests were performed on thin

walled aluminum tubing and P-band brass

waveguide. It was found that in comparison
to low melting alloys the bends were iden-

tical within the statistical variation of sam-
ples. The time required for the operation

was considerably shorter.
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* Received by the PGMTT, November 2, 1959.

On Higher-Order Hybrid Modes of
Dielectric Cylinders*

In the course of investigations into the
properties of various surface wave struc-

tures, 1 it became necessary to investigate
hybrid modes on dielectric cylinders for
modes of order n, where n >1. The case %= 1
has received extensive treatment in the

literature [I]- [6].
The radial dependence of the axial fields

is as .Tn [@(P/a)] inside the dielectric cylinder
and Km [g(p/a) ] outside, where P is the radial

* Received by the PGMTT, November 5, 1959.
This note is based on studies undertaken pursuant to
Contract AF 19(604)3879 with the Air Force Cam.
bridge Research Center.

1 Report in preparation.’

cylindrical coordinate, a is the radius of the
cylinder, @ and q are radial eigenvalues, and

n is the rank of the mode.
The requirement of continuity of the

fields at the boundary leads, in the usual
manner, to the characteristic equation in-
volving Bessel functions and their deriva-
tives. This was first given by Schelkunoff
[4]. The derivatives of Bessel functions may

be eliminated from this equation by the use
of identities such as given by Watson [8], to
yield the simple form

(J+ + K+) (,J- – K-)

+ (J-– K-) (J++ K+) = o, (1)

where

~_ = J.-1(P) J.+,(P)

p~.(p) ‘
J+ = ~Jzz ;

Kn-,(q) K+ = K.+,(q)K- =___ —. .
qKn(q) ‘ qKn(q) ‘

and e is permittivity of dielectric cylinder
relative to surrounding medium.

The cutoff values of the parameter p
are of great interest; they may be obtained

by letting q-O in the characteristic equa-

tion. To keep the terms finite requires that

the equation be multiplied by an appropri-
ate power of q before the limit is taken. If it
is assumed that ~– is finite at cutoff, it is
sufficient to multiply the equation by qz
to obtain a solution for the cutoff values of
p; this was given by %helkunoff [4]. How-
ever, if this assumption is not made, an
additional solution may be determined. This

will be outlined below.

Multiplying the characteristic equation
by [qp~.(p) ]2 gives

(0’.ln+, + q2K+PJC) (eJn-, – jJnK-)

+ (Jn-, – pJ.K-) (Gq’J.+, + g2K+PJ.) = O. (2)

Taking the limit as g+O and noting that

K– ~ —~
2(?Z – 1)

and qzK++2n one obtains

(2n pJ. (c + l)Jn_l - &
)

= o. (3)

The solutions are, for n >1,

.Tn(p) = o, p#o. (5)

Eq. 4 is given by Schelkunoff [4]. The
very significant exclusion of the p = O solu-
tion of (5) as a cutoff condition is based on
the fact that for q-O and @-+0, (1) be-
comes, since

J-~?,
1

J+ ~ ___ ,

P’ 2(Z + 1)

(
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.—

Z%<+T)+;) (3–27. – 1) )

2% 1

+ (F– 2(.–1) )(
~+~ + ~) =0. (6)

When the finite terms are neglected in com-
parison with the infinite terms, it is seen
that this is not satisfied at q = O, @= O for
any n >1. However, the @= g = O solution,
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i.e., the condition for “no cutoff, ” is valid for

?2=1 [1].
The asymptotes for the p–q curves are

of interest. For g+ ~ the characteristic
equation becomes simply 2EJ–J+ = O, with
solutions at Jn–l(p) = O and J~+l(p) = O. It
will be seen that the first of these is asso-
ciated with the modes satisfying the first
or Schelkunoff cutoff condition, the second

with the alternate cutoff condition given
here in (5).

Because of the oscillatory character of

J.(p), the characteristic equation is satis-

fied by an infinite set of values of P for any

given q, in particular also for g= O. These

sets of p’s span an infinite set of modes which
may propagate along the dielectric rod. It
is now seen that the existence of the alter-
nate cutoff condition indicates the existence

of an infinite set of modes that interlace the
modes that satisfy the cutoff condition of
(4). This and other salient characteristics

of the doubly infinite set of modes are pre-
sented qualitatively in Fig. 1, with the n = 1

case treated by Beam [1] included for com-
parison in Fig. 2. The curve shapes are based

upon the detailed numerical solution of (2)

obtained with an IBM 650 computer for

n =2, 6 for a wide range of e.
The significance of Fig. 1 may be sum-

marized as follows.
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Fig. l—Loci of solutions of the characteristic eqna-
tion (l) forn>l.
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Fig. 2—Curves of p and Q for u =1.


